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Optimality of Belinskaya’s theorem for odometers:

Theorem (C. 2025+)
Let φ : R+ → R+ be a sublinear map and let S be an odometer. Then there exists
T ∈ Aut(X , µ) such that T and S are φ-OE but not flip-conjugate.

Optimality of Kerr and Li’s theorem:

Theorem (C. 2025+)
Let S be the universal odometer, let α > 0 or α = +∞. There exists
T ∈ Aut(X , µ) such that:

hµ(T ) = α;
T and S are logβ-OE for all β < 1.

Common construction:
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Odometer S ; j Odomutant T j

Let’s define odomutants;
prove a weaker version of the theorem on entropy:

Theorem (C. 2025+, weaker version)
Let S be the universal odometer. There exists T ∈ Aut(X , µ) such that:

hµ(T ) > 0;
T and S are logβ-OE for all β < 1.

and sketch the proof of the other theorem (optimality of Belinskaya’s
theorem for odometers)
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Another definition of odometer.

Combinatorial structure:

Definition (n-cylinders)
Given i0 ∈ {0, 1, . . . , q0 − 1}, . . . , in−1 ∈ {0, 1, . . . , qn−1 − 1},

[i0, . . . , in−1]n := {(xi)n≥0 ∈ X | x0 = i0, . . . , xn−1 = in−1}.
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Odometer:
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With an odomutant: less “predictable” dynamics
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An odomutant T is the data of
integers q0,q1,q2 . . . ≥ 2
and the odometer S on X =

∏
n≥0 {0, 1, . . . , qn − 1};

for every n ≥ 0:
qn+1 permutations of {0, 1, . . . , qn − 1}: σ(n)

0 ,σ
(n)
1 , . . . ,σ

(n)
qn+1−1.

At step n:

xn+1 (n + 1)-th coordinate ∈ {0, . . . , qn+1 − 1}
represents the block [•, . . . , •, •, xn+1]n+2

↓

σ
(n)
xn+1 permutation on the n-th coordinate ∈ {0, . . . , qn − 1}

→ permutation of sub-blocks
[•, . . . , •, 0, xn+1]n+2,
[•, . . . , •, 1, xn+1]n+2,

...
[•, . . . , •, qn, xn+1]n+2
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ψn : X −→ X
(xn)n≥0 7−→

(
σ

(0)
x1 (x0), σ(1)

x2 (x1), . . . , σ(n)
xn+1(xn), xn+1, xn+2, . . .

)
ψ : X −→ X

(xn)n≥0 7−→
(
σ

(0)
x1 (x0), σ(1)

x2 (x1), σ(2)
x3 (x2), . . .

)
= lim

n→+∞
ψn(x)

Definition (Odomutant T associated to the odometer S)
T : {x ∈ X | ψ(x) ̸= (q0 − 1, q1 − 1, . . .)} −→ {x ∈ X | ψ(x) ̸= (0, 0, . . .)}

Tx = lim
n→+∞

ψ−1
n Sψn(x)

T ∈ Aut(X , µ);
T and S have the same measure (up to a null set);
ψ ◦ T = S ◦ ψ almost everywhere,
so T factorizes onto S.
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Proof of:

Theorem (C. 2025+, weaker version)
Let S be the universal odometer. There exists T ∈ Aut(X , µ) such that:

hµ(T ) > 0;
T and S are logβ-OE for all β < 1.

Calculation of hµ(T ):

easier to compute topological entropy
→ T : X → X has to be continuous X
apply the variational principle
→ If T is uniquely ergodic, then htop(T ) = hµ(T )
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HYPOTHESIS 1:
For every n ≥ 0, 0 et qn − 1 are fixed point of the permutations
σ

(n)
0 , σ

(n)
1 , . . . , σ

(n)
qn+1−1.

It gives T : X \ {(q0 − 1, q1 − 1, . . .)} → X \ {(0, 0, . . .)}

that we extend: T (q0 − 1, q1 − 1, . . .) = (0, 0, . . .)

Property
T : X → X is a homeomorphism (so is continuous).
For every x ∈ X (not only "up to a null set"),
OrbT (x) = OrbS(x) (so T is uniquely ergodic).
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Goal:
find the parameters:

the integers qn (and the underlying odometer S);
and the permutations σ(n)

i (satisfying HYPOTHESIS 1),
such that htop(T ) > 0;

...in the hope of getting an orbit equivalence which is logβ-integrable for
every β < 1.
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Topological entropy:

Given an open cover U of X ,
N(U) := min {|U ′|, U ′ sub-covering}

Un = {U0 ∩ T −1(U1) ∩ . . . ∩ T −(n−1)(Un−1) | U0, . . . ,Un−1 ∈ U}

htop(T ,U) = lim
n→+∞

log N(Un)
n

htop(T ) = sup
U

htop(T ,U)
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In X =
∏

n≥0 {0, 1, . . . , qn − 1} . . .

Reminder
For i ∈ {0, 1, . . . , q0 − 1}, [i ]1 = {(xn)n≥0 ∈ X | x0 = i} (1-cylinder)

. . . consider U⋆ = {[0]1, [1]1, . . . , [q0 − 1]1} (open covering of X )

htop(T ) ≥ htop(T ,U⋆) = lim
n→+∞

log N((U⋆)n)
n

But U⋆ is also a partition! 2 consequences:

1st consequence:

N((U⋆)n) = |(U⋆)n \ {∅}|

htop(T ) ≥ lim
n→+∞

log |(U⋆)n|
n
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2nd consequence: coding with word.

Reminder
(U⋆)n is the set of elements of the form

[i0]1 ∩ T −1([i1]1) ∩ . . . ∩ T −(n−1)([in−1]1)

with i0, . . . , in−1 ∈ {0, 1, . . . , q0 − 1}.

Given x ∈ X ,

x ∈ [i0]1 ∩ T −1([i1]1) ∩ . . . ∩ T −(n−1)([in−1]1)
⇐⇒ x ∈ [i0]1, Tx ∈ [i1]1, . . . , T n−1x = [in−1]1

; To x , we associate the n-word (i0, . . . , in−1)

htop(T ) ≥ lim
n→+∞

log (number of n-words (i0,...,in−1) obtained from 1-cylinders)
n
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Reminder on HYPOTHESIS 1:
For every n ≥ 0, 0 and qn − 1 are fixed points of the permutations
σ

(n)
0 , . . . , σ

(n)
qn+1−1.

HYPOTHESIS 2:
For every n ≥ 0, σ(n)

0 , . . . , σ
(n)
qn+1−1 describe all the permutations of

{0, 1, . . . , qn − 1} fixing 0 and qn − 1, and are pairwise distinct.

; qn+1 = (qn − 2)!

Proposition
With HYPOTHESIS 2, we produce a lot of words !

htop(T ) ≥ (log q0) − C where C is a constant.

If q0 is large enough, then htop(T ) > 0.
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Proof of the proposition:

1 We prove that

”number of hn-words obtained from 1-cylinders” ≥ qn

where hn+1 = q0q1 . . . qn is the height of the towers at step n.

(Proof by drawings in the next two slides, cases n = 0 and n = 1)

2 htop(T ) ≥ lim
n→+∞

log (number of n-words obtained from 1-cylinders)
n ,

so htop(T ) ≥ limn→+∞
log qn

hn
.

To get log qn
hn

≥ (log q0) − C , we successively use
qi+1 = (qi − 2)!;
log (qi !) ≥ qi log qi ;
hi+1 = qi hi .
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[q0 − 1]1

[q0 − 3]1

[q0 − 2]1

[2]1

[0]1

[1]1

[•, 0]2 [•, 1]2 [•, q1 − 1]2

h1

Corentin Correia Odomutants 18 / 24



[q0 − 1]1

[q0 − 3]1

[q0 − 2]1

[2]1

[0]1

[1]1

[•, 0]2 [•, 1]2 [•, q1 − 1]2
h1-words

W
(0)
0 = (0, 2, q0 − 2, ... , 1, ... , q0 − 3, q0 − 1)

W
(0)
1 = (0, q0 − 2, q0 − 3, ... , 2, 1, q0 − 1) W

(0)
q1−1 = (0, 1, q0 − 3, 2, ... , q0 − 2, q0 − 1)

h1
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1 = (0, q0 − 2, q0 − 3, ... , 2, 1, q0 − 1) W

(0)
q1−1 = (0, 1, q0 − 3, 2, ... , q0 − 2, q0 − 1)

∀i ∈ {0, ... , q1 − 1}, W (0)
i = (0,σ

(0)
i (1),σ

(0)
i (2), ... , σ

(0)
i (q0 − 2), q0 − 1)

Pairwise distinct permutations ⇒ at least q1 h1-words

h1
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[•, 0]2

[•, 1]2

[•, q1 − 2]2

[•, q1 − 1]2

W
(0)
0

W
(0)
1

W
(0)
q1−2

W
(0)
q1−1

h1

h1

h1

pairwise distinct h1-words
︸︷︷︸

h2

h1
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h1

h1

h1

h1

W
(0)
0

W
(0)
1

W
(0)
q1−2

W
(0)
q1−1

︸︷︷︸

[•, 0]2

[•, 1]2

[•, q1 − 2]2

[•, q1 − 1]2

pairwise distinct h1-words
[•, •, 0]3 [•, •, 1]3 [•, •, q2 − 1]3

h2-words

W
(1)
0 = W

(0)
0 ·W (0)

1 · ... ·W (0)
q1−2 ·W

(0)
q1−1

W
(1)
1 = W

(0)
0 ·W (0)

q1−2 · ... ·W
(0)
1 ·W (0)

q1−1

h2
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h1

h1

h1

h1

W
(0)
0

W
(0)
1

W
(0)
q1−2

W
(0)
q1−1

︸︷︷︸

[•, 0]2

[•, 1]2

[•, q1 − 2]2

[•, q1 − 1]2

pairwise distinct h1-words
[•, •, 0]3 [•, •, 1]3 [•, •, q2 − 1]3

h2-words

W
(1)
0 = W

(0)
0 ·W (0)

1 · ... ·W (0)
q1−2 ·W

(0)
q1−1

W
(1)
1 = W

(0)
0 ·W (0)

q1−2 · ... ·W
(0)
1 ·W (0)

q1−1

∀i ∈ {0, ... , q2 − 1}, W (1)
i = W

(0)
0 ·W (0)

σ
(1)
i (1)

·W (0)

σ
(1)
i (2)

· ... ·W (0)

σ
(1)
i (q1−2)

·W (0)
q1−1

Pairwise distinct permutations and pairwise distincts subwords W
(0)
j

⇒ at least q2 h2-words

h2
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Proposition

If φ : R+ → R+ is non-decreasing, then
∫

X
φ(|cT (x)|)dµ(x) and∫

X
φ(|cS(x)|)dµ(x) are bounded above by

∑
n≥0

φ(q0 . . . qn+1)
q0 . . . qn

.

Corollary

With qn+1 = (qn − 2)!, the cocycles are logβ-integrable for every β < 1.

This concludes the proof of the theorem on entropy (the weaker version).
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Topological version:

Theorem (C. 2025+)
Let S be the universal odometer, let α > 0 or α = +∞. There exists a Cantor
minimal homeomorphism T such that:

htop(T ) = α;
T and S are strongly orbit equivalent, with logβ-integrable cocycles for
every β < 1.

Strong orbit equivalence: the cocycles each have at most one point of
discontinuity.

Generalization of:

Theorem (Boyle–Handelman 1994)
Let S the dyadic odometer, let α > 0 or α = +∞. There exists a Cantor minimal
homeomorphim T such that:

htop(T ) = α;
T and S are strongly orbit equivalent.
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Sketch of proof of:

Theorem (C. 2025+)
Let φ : R+ → R+ be a sublinear map and let S be an odometer. Then there exists
T ∈ Aut(X , µ) such that T and S are φ-OE but not flip-conjugate.

We build T as an odomutant.

Reminder: ψ ◦ T = S ◦ ψ almost everywhere

ψ : X −→ X
(xn)n≥0 7−→

(
σ

(0)
x1 (x0), σ(1)

x2 (x1), σ(2)
x3 (x2), . . .

)
= lim

n→+∞
ψn(x)

If ψ is invertible, then T and S are isomorphic (by definition)

Question (Coalescence property)
If T and S are isomorphic, is ψ invertible?

Yes! because S is an odometer (No! in full generality)
It holds more generally when S is ergodic and has discrete spectrum.
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Definition
Let S ∈ Aut(X , µ). An eigenfunction of S is f ∈ L2(X , µ) \ {0}} such that
f ◦ S = λf for some λ ∈ C (eigenvalue).
Eλ(S) := {eigenfunctions associated to λ} ∪ {0} (eigenspace).

If S is ergodic, then for every eigenvalue λ, Eλ(S) is a line.

Definition
S ∈ Aut(X , µ) has discrete spectrum if the span of all of its eigenfunctions is
dense in L2(X , µ). (example: odometers)

Property
If S is ergodic and has discrete spectrum, then S is coalescent: for every
T ∈ Aut(X , µ) isomorphic to S, every factor map ψ from T to S is invertible.

Proof: f ∈ Eλ(S) ⇒ f ◦ ψ ∈ Eλ(T )
By ergodicity, Eλ(T ) = Eλ(S) ◦ ψ
T and S have discrete spectrum: L2(X , µ) = L2(X , µ) ◦ ψ.
So ψ is invertible.
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Sketch of proof of the theorem:

We build T as an odomutant such that
ψ is not invertible (T and S are not flip-conjugate);
the distortions of the orbits are moderate (φ-integrable cocycles)
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