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Optimality of Belinskaya's theorem for odometers:

Theorem (C. 2025+)

Let ¢: Ry — Ry be a sublinear map and let S be an odometer. Then there exists
T € Aut(X, p) such that T and S are @-OE but not flip-conjugate.

Optimality of Kerr and Li's theorem:

Theorem (C. 2025+)

Let S be the universal odometer, let o« > 0 or « = +00. There exists
T € Aut(X, p) such that:

e h,(T)=q,
o T and S are log”-OE for all § < 1.

Common construction:
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Theorem (C. 2025+)

Let S be the universal odometer, let « > 0 or &« = +0c0. There exists
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o T and S are log”-OE for all § < 1.

Common construction:

Successive

Odometer S —— permutations | ——»
of the orbits
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Optimality of Belinskaya's theorem for odometers:

Theorem (C. 2025+)

Let ¢: Ry — Ry be a sublinear map and let S be an odometer. Then there exists
T € Aut(X, p) such that T and S are @-OE but not flip-conjugate.

Optimality of Kerr and Li's theorem:

Theorem (C. 2025+)

Let S be the universal odometer, let « > 0 or &« = +0c0. There exists
T € Aut(X, p) such that:

e h,(T)=q,
o T and S are log”-OE for all § < 1.

Common construction:

Successive

Odometer S ——  permutations —— 4* Odomutant T %*
of the orbits
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Odometer S ~> 4* Odomutant T %*

@ Let's define odomutants;

@ prove a weaker version of the theorem on entropy:

Theorem (C. 2025+, weaker version)

Let S be the universal odometer. There exists T € Aut(X, u) such that:
o h,(T)>0;
o T and S are log?-OE for all 8 < 1.

@ and sketch the proof of the other theorem (optimality of Belinskaya's
theorem for odometers)
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Another definition of odometer.

Combinatorial structure:

Given ioG{O,l,...,qo—l},...,i,,_lE{O,l,...,qn_l—l},

lioy -+ s in—1]n = {(xi)n>0 € X | x0 = fo, .- -, Xn—1 = in—1}.
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Odometer:
[1]1 [2]1

[0]1

[0 — 1]1 [90 — 2]1

With an odomutant: less “predictable” dynamics
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An odomutant T is the data of

e integers gy, 91,9, ... > 2
and the odometer S on X = ano {0,1,...,q, —1};
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An odomutant T is the data of
e integers gy, 91,9, ... > 2

and the odometer S on X = ano {0,1,...,q, —1};

o for every n > O:

gn+1 permutations of {0,1,...,q, — 1}: af)"), a{"),.
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An odomutant T is the data of
e integers gy, 91,9, ... > 2

and the odometer S on X = ano {0,1,...,q, —1};
o for every n > O:
gn+1 permutations of {0,1,...,q, — 1}: cr(") (n ), .. 51:11—1'
At step n:
Xnt1 (n+ 1)-th coordinate € {0,...,qpt1 — 1}
represents the block [e, ... e & x, 1]ni2
d
aif_)l permutation on the n-th coordinate € {0,...,q, — 1}
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An odomutant T is the data of

e integers gy, 91,9, ... > 2
and the odometer S on X = ano {0,1,...,q, —1};

o for every n > O:

gn+1 permutations of {0,1,...,q, — 1}: crf)")7 a{"), . ’0'51:11—1'
At step n:
Xnt1 (n+ 1)-th coordinate € {0,...,qpt1 — 1}
represents the block [e, ... e & x, 1]ni2
+
aif_)l permutation on the n-th coordinate € {0,...,q, — 1}
— permutation of sub-blocks
[.7 s @ 07 Xn+1]n+27
[.7 S @ 17 Xn+1]n+2a

[.7 -, 9, 0n, Xn+1]n+2
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b X X

(Xn)n>0 — (0')(<?)(X0), a,(;)(xl), cey aﬁgl(xn),xnﬂ,xnﬂ, .. )
v X X

Cadzo — (00a), o), o), ) = lim win(x)



v X — X

Cadzo (7 00) 0 0a), s o, ()it Xt
v X — X

Cadzo — (00a), o), o), ) = lim win(x)

T:{xeX|¢Y(Xx)#(qgp—1,g1—1,...)} — {x € X | ¥(x) #(0,0,...)}

— i =1l
Tx=lim 7 S¢(x)




Gt X X

(Xn)nZO — U)(<(1)) (X0)7 0'>(<3)(X1), DR (T)((:J)rl (Xn)7Xn+17 Xn+2) . )
v X X

(a)nzo — (0 (x0), o (x), o2 (x), .. ) = lim_4n(x)

Definition (Odomutant T associated to the odometer S)
T:{xeX|¥(x)#(qp—1,q—1,...)} — {xe X|¥(x)#(0,0,...)}
Tx= lim ¢ 'S,(x)

n—+oo

o T e Aut(X,p);
@ T and S have the same measure (up to a null set);
@ Ypo T = S o1 almost everywhere,

so T factorizes onto S.
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Proof of:

Let S be the universal odometer. There exists T € Aut(X, pt) such that:
e h,(T)>0;
o T and S are log”-OE for all 8 < 1.
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Proof of:

Theorem (C. 2025+, weaker version)

Let S be the universal odometer. There exists T € Aut(X, u) such that:
@ h,(T)>0;
o T and S are log”-OE for all 8 < 1.

Calculation of h,(T):

@ easier to compute topological entropy
— T: X — X has to be continuous X

@ apply the variational principle
— If T is uniquely ergodic, then heop(T) = h,(T)
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HYPOTHESIS 1:

For every n >0, 0 et g, — 1 are fixed point of the permutations
(n) _(n) (n)
g

00 501 -y Og 1

It gives T: X\ {(qo —1,q1 — 1,...)} = X\ {(0,0,...)}
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HYPOTHESIS 1:

For every n >0, 0 et g, — 1 are fixed point of the permutations
(n) _(n) (n)
g

00 501 -y Og 1

It gives T: X\ {(qo —1,q1 — 1,...)} = X\ {(0,0,...)}
that we extend: T(qo— 1,1 — 1,...) =(0,0,...)

Property
e T: X — X is a homeomorphism (so is continuous).

@ for every x € X (not only "up to a null set"),
Orb7(x) = Orbs(x) (so T is uniquely ergodic).
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Goal:
o find the parameters:
e the integers g, (and the underlying odometer S);
e and the permutations cri") (satisfying HYPOTHESIS 1),

such that hop(T) > 0;
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Goal:
o find the parameters:
e the integers g, (and the underlying odometer S);
e and the permutations cri") (satisfying HYPOTHESIS 1),

such that hop(T) > 0;

e ...in the hope of getting an orbit equivalence which is log”-integrable for
every 5 < 1.
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Topological entropy:

Given an open cover U of X,
o N(U) :=min{|U'|, U sub-covering}
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Topological entropy:

Given an open cover U of X,
o N(U) :=min{|U'|, U sub-covering}
o U ={UNnTHU)N...nT=DU,_1) | Uy,...,Up1 €U}

log N(1"
heop(T,U) = lim log N(U")

n——+oo n
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Topological entropy:

Given an open cover U of X,
o N(U) :=min{|U'|, U sub-covering}
o U ={UNnTHU)N...nT=DU,_1) | Uy,...,Up1 €U}

log N(1"
heop(T,U) = lim log N(U")

n——+oo n

htop( T) = S;p htop( T, U)
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In X =1],50{0,1,...,q0 — 1}...

Forie {0,1,...,q90 — 1}, [i]1 = {(xn)n>0 € X | xo = i} (1-cylinder)

... consider U, = {[0]1,[1]1,---,[g0 — 1]1} (open covering of X)

hiop(T) = heop(T,U) = lim w

n—+o00 n
But U, is also a partition! 2 consequences:

1st consequence:

N((U)") = [(@h)" \ {0}



InX:HnZO{O,l,...,qn—l}...

Reminder
Forie{0,1,...,q90— 1}, [/l = {(Xn)n>0 € X | x0 = i} (1-cylinder) J

... consider U, = {[0]1,[1]1,---,[g0 — 1]1} (open covering of X)

Biop(T) > huop(To14,) = lim 2EN()")

n—-+o00o n
But U, is also a partition! 2 consequences:

1st consequence:

N((U)") = [(U)" \ {0}

heop(T) > lim log |(¢4.)"]

n—+o00 n
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2nd consequence: coding with word.



2nd consequence: coding with word.

(U,)"™ is the set of elements of the form

[i0]1 n T_l([il]l) n...N T_("_l)([i,,_l]l)

Withio,...,i,,_lE{O,l,..., 0—1}.




2nd consequence: coding with word.

(U,)"™ is the set of elements of the form

[i0]1 n T_l([il]l) n...N T_(n_l)([i,,_l]l)

Withio,...,i,,_lE{O,l,..., 0—1}.

Given x € X,

X € [iO]l n T_l([illl) n...N T_(n_l)([in_lll)
<~ X € [io]l, Tx € [il]la RN Tn_]'X = [in—l]l



2nd consequence: coding with word.

Reminder

(U,)" is the set of elements of the form
lioli N T ([al) NN T D ([i—1]1)

Withl'o,...,l.n_lE{O,l,...,qo—l}.

Given x € X,

x€loh N T [a)N...0 T~ D([i_1]h)
<~ X € [i0]1, Tx € [i1]17 ey T 1x = [in,1]1

~> To x, we associate the n-word (ig, . .., in—1)
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2nd consequence: coding with word.

Reminder

(U,)" is the set of elements of the form
lioli N T ([al) NN T D ([i—1]1)

Withl'o,...,l.n_lE{O,l,...,qo—l}.

Given x € X,

x€loh N T [a)N...0 T~ D([i_1]h)
<~ X € [i0]17 Tx € [’.1]1» ey T”_lx = [in,1]1

~> To x, we associate the n-word (ig, . .., in—1)

htop( T) > lim log (number of n-words (i, ..., in—1) obtained from 1-cylinders)

~ n—+oo n

Corentin Correia Odomutants 15 /24



Reminder on HYPOTHESIS 1:

For every n > 0, 0 and g, — 1 are fixed points of the permutations
(m) ()

00 1 0g, -1
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Reminder on HYPOTHESIS 1:
For every n > 0, 0 and g, — 1 are fixed points of the permutations
(m) ()

00 1 0g, -1

HYPOTHESIS 2: -

For every n > 0, 0'(()"), .., 0q. 1 describe all the permutations of

{0,1,...,q, — 1} fixing 0 and g, — 1, and are pairwise distinct.

~ Qpny1 = (qn - 2)!
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Reminder on HYPOTHESIS 1:

For every n > 0, 0 and g, — 1 are fixed points of the permutations
(m) ()

00 1 0g, -1

HYPOTHESIS 2: -

For every n > 0, 0'(()"), .., 0q. 1 describe all the permutations of

{0,1,...,q, — 1} fixing 0 and g, — 1, and are pairwise distinct.

~ Qpny1 = (qn - 2)!

Proposition
With HYPOTHESIS 2, we produce a lot of words !

hiop(T) > (log go) — C where C is a constant.

If qo is large enough, then hy,(T) > 0.

Corentin Correia Odomutants

16/24



Proof of the proposition:

@ We prove that
"number of h,-words obtained from 1-cylinders” > q,

where h,1 1 = qoq1 - . - gn is the height of the towers at step n.

(Proof by drawings in the next two slides, cases n =0 and n = 1)
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Proof of the proposition:

@ We prove that
"number of h,-words obtained from 1-cylinders” > q,
where h,1 1 = qoq1 - . - gn is the height of the towers at step n.
(Proof by drawings in the next two slides, cases n =0 and n = 1)

Q hiop(T) > lim log (number of n-words obtained from 1-cylinders)

n ’

~ n—+oo

. log g,
SO htop(T) 2 ||mn*>+oo %7’7

log gn
hn

o git1= (g —2)}

o log(qi!) > qilog g;;

o h,‘+1 = q,'h,'.

To get > (log go) — C, we successively use
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[q0 — 1]4

. 1
[qU - 2]1 A 4\\ \\\ \
-3 [ | ‘/ | S
o T
[2]1 /4 /\\‘ ‘w \\ ;V “‘\‘ /) '\7/
(1 */ / \ \
[0]: \
[e. 0L [+ 12 [e.q1 — 12
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[q0 — 1]4 \ \ )
- \
o =2« o - \
[o—3l | v /5] \
T ——— |1
N | 7
[2lx Jd 2 ] \ ‘v /‘} g
(1 ( v / \ \
(0] :
h1-words [+, 0] [o. 1] [e.q1 — 12
W = (0,290~ 2., 1,...,q0 — 3,60 — 1)
W =(0.q0-2,a0-3. 2L a0-1) ... W =(01,a-32...q0-2q@-1)
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[qU - 1]1 N \ 1
_ \
[q0 — 2]y ) 7 ) \ \
g0 — 3] | / Lo B
E ! _) { : \,‘\ . E \\,/r h1
2 Mo T
[1): A BN
[0, i
1 -1
hy-words [*. 0] [o. 1], [e.q1 —1]>
W =(0.2,0~2, ... 1. g0 —3,q0 — 1)
W =(0,00-2.90 -3, 2 L,a0—1) . .. WS =(0,1,90-3.2,..q0— 2,60~ 1)

Vie{0,...q—1}, W =(0,6"01),02),....0"" (g0~ 2), g0 — 1)

Pairwise distinct permutations = at least g; h;-words
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oqr—1]| ' b
Z 4w,
4
[o.q1 =2l hy
Z ——
: e
4
[ 1| hy

4— w0

[e. 0] L hy

73 =g > Wso)

_
pairwise distinct hy-words
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[o.q1 — 1]

[e.q1 — 2]

Corentin Correia

...... hy
—w,
h
—w,
hy
—
...... h
—
“““ [o,0.02—1]3
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4 4
[" aq1 — 1]2 hy
—
[.q1—2]> hy
— .
hy
h
— O
M
— O
[¢.¢.0]5 [o01] =000 [o0.qo— 13 ~— 08 —
pairwise distinct hy-words
viel{o,.., -1}, wO=w. w® w® . .wO W
{0 =1, W ¢ 0 el o) 0t

Pairwise distinct permutations and pairwise distincts subwords WJ-(O)
= at least gp hp-words
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If o: Ry — R, is non-decreasing, then / o(|er(x)])dp(x) and
X

/ ©(les(x))du(x) are bounded above by Z M
X >0 qo---Qn




If o: Ry — R, is non-decreasing, then / o(|er(x)])dp(x) and
X

/ ©(les(x))du(x) are bounded above by Z M
X >0 qo---Qn

With gn+1 = (gn — 2)!, the cocycles are log”-integrable for every B < 1. I

This concludes the proof of the theorem on entropy (the weaker version).




Topological version:

Theorem (C. 2025+)

Let S be the universal odometer, let o« > 0 or o = +o00. There exists a Cantor
minimal homeomorphism T such that:
o htop(T) =«

e T and S are strongly orbit equivalent, with IogB -integrable cocycles for
every B < 1.

Strong orbit equivalence: the cocycles each have at most one point of
discontinuity.
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Topological version:

Theorem (C. 2025+) |

Let S be the universal odometer, let o« > 0 or o = +o00. There exists a Cantor
minimal homeomorphism T such that:

o htop(T) =«
@ T and S are strongly orbit equivalent, with Iogﬂ -integrable cocycles for
every B < 1.

Strong orbit equivalence: the cocycles each have at most one point of
discontinuity.
Generalization of:

Theorem (Boyle-Handelman 1994) |

Let S the dyadic odometer, let o« > 0 or « = +00. There exists a Cantor minimal
homeomorphim T such that:

@ hiop(T) =0,
@ T and S are strongly orbit equivalent.
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Sketch of proof of:
Theorem (C. 2025+)

Let : Ry — Ry be a sublinear map and let S be an odometer. Then there exists
T € Aut(X, p) such that T and S are p-OE but not flip-conjugate.

We build T as an odomutant.

Reminder: ¥ o T = S o4 almost everywhere
P X — X
Cadnzo > (0200, 1 0a), d@ ), ) = tim wn(x)

n—+o00
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Sketch of proof of:
Theorem (C. 2025+)

Let : Ry — Ry be a sublinear map and let S be an odometer. Then there exists
T € Aut(X, p) such that T and S are ¢-OE but not flip-conjugate.

We build T as an odomutant.

Reminder: ¥ o T = S o4 almost everywhere

v X — X

Cadzo — (0 00), o), o)) = limwn(x)

If 9 is invertible, then T and S are isomorphic (by definition)

Question (Coalescence property)

If T and S are isomorphic, is v invertible?

Yes! because S is an odometer (No! in full generality)
It holds more generally when S is ergodic and has discrete spectrum.
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Definition

Let S € Aut(X, u). An eigenfunction of S is f € L?(X, ) \ {0}} such that
foS = \f for some A € C (eigenvalue).
E(S) := {eigenfunctions associated to A} U {0} (eigenspace).

If S is ergodic, then for every eigenvalue A, Ex(S) is a line.

Definition
S € Aut(X, u) has discrete spectrum if the span of all of its eigenfunctions is
dense in L2(X, u). (example: odometers)

Property
If S is ergodic and has discrete spectrum, then S is coalescent: for every

T € Aut(X, p) isomorphic to S, every factor map ¢ from T to S is invertible.

Proof: f € Ex(S) = fot € Ex(T)

By ergodicity, Ex(T) = Ex(S) o

T and S have discrete spectrum: L2(X, u) = L2(X, ) o 9.
So v is invertible.
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Sketch of proof of the theorem:

We build T as an odomutant such that
@ 1 is not invertible (T and S are not flip-conjugate);
o the distortions of the orbits are moderate (¢-integrable cocycles)
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